Quantum estimation for non-differentiable models

نویسندگان

  • Yoshiyuki Tsuda
  • Keiji Matsumoto
چکیده

State estimation is a classical problem in quantum information. In optimization of estimation scheme, to find a lower bound to the error of the estimator is a very important step. So far, all the proposed tractable lower bounds use derivative of density matrix. However, sometimes, we are interested in quantities with singularity, e.g. concurrence etc. In the paper, lower bounds to a Mean Square Error (MSE) of an estimator are derived for a quantum estimation problem without smoothness assumptions. Our main idea is to replace the derivative by difference, as is done in classical estimation theory. We applied the inequalities to several examples, and derived optimal estimator for some of them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

Analytic Perturbation Theory and Renormalization Analysis of Matter Coupled to Quantized Radiation

For a large class of quantum mechanical models of matter and radiation we develop an analytic perturbation theory for non-degenerate ground states. This theory is applicable, for example, to models of matter with static nuclei and non-relativistic electrons that are coupled to the UV-cutoff quantized radiation field in the dipole approximation. If the lowest point of the energy spectrum is a no...

متن کامل

Constants of Motion for Non-Differentiable Quantum Variational Problems

We extend the DuBois-Reymond necessary optimality condition and Noether’s symmetry theorem to the scale relativity theory setting. Both Lagrangian and Hamiltonian versions of Noether’s theorem are proved, covering problems of the calculus of variations with functionals defined on sets of non-differentiable functions, as well as more general non-differentiable problems of optimal control. As an ...

متن کامل

Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate

Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...

متن کامل

Fractal Approximation of Motion and Its Implications in Quantum Mechanics

Inconsistencies of some standard quantum mechanical models (Madelung’s, de Broglie’s models) are eliminated assuming the micro particle movements on continuous, but non-differentiable curves (fractal curves). This hypothesis, named by us the fractal approximation of motion, will allow an unitary approach of the phenomena in quantum mechanics (separation of the physical motion of objects in wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004